Introduction to BOMA Measurements

Presented by the AIA Interior Architecture Knowledge Community

Future, Free AIA Webinars

June 28
Human Resources: Creating the right workforce for your future
AIA Practice Management Knowledge Community

July 13

Practical BIM
AIA Technology in Architectural Practice Knowledge Community

Register at No Cost

http://network.aia.org/events/webinars

Good design
makes a difference ${ }_{T u}$

Copyright Materials

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.
© 2012 The American Institute of Architects

Good design
makes a difference

Compliance Statement

"AIA Knowledge" is a Registered Provider with The American Institute of Architects Continuing Education System (AIA/CES). Credit(s) earned on completion of this program will be reported to AIA/CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request.

This program is registered with AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

AIA/CES Reporting Details

All attendees will be eligible to receive:
1.5 CEHs (AIA continuing education) or
1.5 CEHs Experience Hour of IDP supplementary education credit.

All attendees at your site will submit for credit by completing the webinar survey/report form.

The URL to the survey/form will be listed at the end of the presentation. Certificates of Completion can be download at the end of the survey.

Continuing education questions can be directed to knowledgecommunities@aia.org.
makes a difference

Course Description

The rules established by the Building Owners and Managers Association (BOMA) are the recognized national industry standard for measurement of space. Gain insight into these important professional tools and understand how to measure a building using BOMA methodology.

Andrew Patapoff and Erik Hodgetts of IA Interior Architects will a give clear description of how to apply the most common BOMA standards for commercial space and answer your questions related to the ways in which areas are quantified for planning, design and real estate use.

Learning Objectives

1. Be familiar with the terms and methods for calculating the areas of tenant spaces in commercial office buildings as established by the nationallyrecognized Building Owners and Managers Association (BOMA).
2. Understand how to use BOMA's Method A and Method B to measure a building's area, and the pros and cons of each.
3. Apply BOMA methods to generate Rentable Square Footage for a building and its occupied areas for each method.
4. Mathematically derive the Loss Factors and Add-on Rates needed in order to convert between these space measurement standards.
makes a difference

Andrew Patapoff, AIA

Senior Associate IA Interior Architects

Erik Hodgetts, AIA, LEED AP

Director of Legal Services
IA Interior Architects

Submit a question to the moderator via the Chat box. They will be answered as time allows.

Mary Burke, AIA
Moderator

THE AMERICAN INSTITUTE OF ARCHITECTS

Introduction to BOMA Measurements

June 26, 2012

IA Aremion

PRESENTED BY:

Andrew Patapoff, AIA
Senior Associate
IA Interior Architects

Erik Hodgetts, AIA, LEED AP Director of Legal Services IA Interior Architects

OUTLINE

- Introduction
- Overview of BOMA Standards
- BOMA Terminology
- Measurement via Method A (Legacy Method)
- Measurement via Method B (Single Load Factor Method)
- Conclusions
- Questions and Answers

INTRODUCTION TO BOMA MEASUREMENTS

OVERVIEW OF BOMA STANDARDS

OVERVIEW OF BOMA STANDARDS

BUILDING OWNERS AND MANAGERS ASSOCIATION INTERNATIONAL (BOMA)

- Founded in 1907 to establish and lobby for industry best practices, education and common standards and guidelines.

- Members from every aspect of the real estate industry, including owners, developers, brokers, facility managers and service/product providers.
- Space measurement standards since 1915 , updated about every 10 years.
- Voluntary standards for commercial office space and other building types.
- One common reference standard for landlords and tenants.
- Through the 1996 version of the BOMA standard, there was one method of measurement, but there are now two options to select from.
- Landlords and owners must select one method and use it to measure the entire building - you cannot mix and match.

BOMA TERMINOLOGY

MEASUREMENT METHODS

STEP I: Determine the interior gross area (IGA) of the building and each of its floors by establishing the IGA boundary.

STEP II: Classify all areas within the IGA boundary into one of the following classes of space:

- Major vertical penetrations
- Base building circulation (Method B only)
- Occupant areas
- Building amenity areas
- Building service areas
- Floor amenity areas
- Floor service areas
- Parking
- Occupant storage

STEP III: Determine the boundaries between each class of space using the wall priority diagram and calculate the areas of all classes of space.

STEP IV: Utilize the global summary of areas chart to determine the rentable area of each occupant area.

INTERIOR GROSS AREA (IGA)

- The foundation of all other BOMA measurements.
- Determined for each floor of the building and forms a closed perimeter around the area of the floor.
- No deductions for columns and other projections necessary for the building.
- Excludes voids and interstitial space.
- Most typical boundary condition is vertical exterior
 enclosure, using the dominant portion.
- The combination of each floor's interior gross area establishes the IGA for the total building.

IGA BOUNDARY CONDITIONS

BOMA CONDITION ID NUMBER	CONDITION DESCRIPTION	IGA BOUNDARY
1	Vertical exterior enclosure	Dominant portion
2	Public pedestrian thoroughfare	Enclosure limit
3	External circulation	Outside boundary of external circulation
4	Non-vertical exterior enclosure	Inside face of exterior enclosure at floor level
5	No dominant portion	Inside face of exterior enclosure at floor level
6	Unprotected exterior opening	Line at outside face of perimeter columns or exterior enclosure
7	IGA adjacent to a void with a full or partial wall	Dominant portion
8	IGA adjacent to a void without a wall	Edge of floor surface
9	Ownership change inside the building (except at vault space)	The property line

IGA BOUNDARY CONDITIONS

BOMA CONDITION ID NUMBER	CONDITION DESCRIPTION	IGA BOUNDARY
1	Vertical exterior enclosure	Dominant portion
2	Public pedestrian thoroughfare	Enclosure limit
3	External circulation	Outside boundary of external circulation
4	Non-vertical exterior enclosure	Inside face of exterior enclosure at floor level
5	No dominant portion	Inside face of exterior enclosure at floor level
6	Unprotected exterior opening	Line at outside face of perimeter columns or exterior enclosure
7	IGA adjacent to a void with a full or partial wall	Dominant portion
8	IGA adjacent to a void without a wall	Edge of floor surface
9	Ownership change inside the building (except at vault space)	The property line

DOMINANT PORTION

- Measures to the inside face of the building enclosure.
- 50% or more of the vertical dimension between the finished surface of the floor and the finished surface of the ceiling.
- Determined on a vertical section of the enclosure, not a plan or elevation.
- Changes each time that the enclosure condition changes.
- Ignores columns and projections necessary to the building.

ENCLOSURE LIMIT

- Intended to represent the limit that an occupant could build up to next to a public pedestrian thoroughfare.
- Used where pedestrian traffic consists of activity beyond what is associated with the building use.
- Typically occurs at ground level areas, but could be used at any level.
- Extends to outside surface of perimeter columns or exterior enclosure.
- Continues past door setbacks and other recesses.

THIRD FLOOR

THIRD FLOOR

SECOND FLOOR

SECOND FLOOR

GROUND FLOOR

GROUND FLOOR

MAJOR VERTICAL PENETRATION

- Floor area over 1 SF that serves vertical building systems or vertical occupant circulation.
- Includes stairs, elevator shafts, flues, pipe shafts, vertical ducts and their enclosing walls.
- Excludes voids (changed from the prior standard).
- Floor area under stairs and elevators and within their enclosing walls is generally included.
- Fully enclosed stair landings ARE included. An open stair landing at a floor level is NOT included.
- Area extends to the Far Side of the wall adjacent to all other space classes.

Illustration 7A Second Floor Plan

8A - Egress Stair with Door at Corridor

8B - Egress Stair without Door Corridor

WALL PRIORITY DIAGRAM

FS: Far Side wall surface					
CL: Centerline of wall					
NS: Near Side wall surface					
MAJOR VERTICAL PENETRATION	CL	FS	FS	FS	FS
BUILDING SERVICE AREAS	NS	CL	FS	FS	FS
FLOOR SERVICE AREAS	NS	NS	CL	FS	FS
BASE BUILDING CIRCULATION (METHOD B ONLY)	NS	NS	NS	CL	FS
OCCUPANT AREA \& AMENITY AREAS OCCUPANT STORAGE (EXCLUDED)	NS	NS	NS	NS	CL

THIRD FLOOR

SECOND FLOOR

MAJOR VERTICAL PENETRATIONS

968 SF

OCCUPANT AREA

- Area where an occupant houses personnel, equipment, fixtures, furniture, supplies, goods or merchandise.
- Was "office area" or "store area" in the prior standard.
- Includes the area of Door Setbacks when required.
- Measured to the Near Side of walls when adjacent to all other space classes.
- Measured to the Centerline of walls when adjacent to other Occupant Areas.
- Excludes hypothetical Base Building Circulation on single-tenant floors in Method B only.

5A - Interior Door Set-backs

THIRD FLOOR

LEGEND
IGA MVP OA OA OA BAA BSA FSA

OCCUPANT AREAS

OFFICE 201: 11,070 SF
OFFICE 202: 8,622 SF

OCCUPANT AREAS

OFFICE 101: 4,552 SF
OFFICE 102: 4,806 SF
OFFICE 103: 1,872 SF

FLOOR SERVICE AND AMENITY AREAS

- FLOOR SERVICE AREA provides services that allow occupants to work on that floor.
- Primarily services ONLY the floor it is located on.
- Includes Restrooms, Janitorial closets, Electrical and Telephone closets, Mechanical rooms.
- On a multi-tenant floor, includes the elevator lobby and the common corridor (Method A).
- On an entry floor, any public corridor beyond the Building Service Area for common access/egress (Method A).
- FLOOR AMENITY AREAS are uncommon in today's commercial market.
- Could include items such as a common break or vending area.

BUILDING SERVICE AND AMENITY AREAS

- Similar concept to Floor Service Areas and Floor Amenity Areas, but serving the entire building.
- BUILDING SERVICE AREAS enable occupants to work in the building.
- Includes main entrance lobbies, access and egress corridors on entrance floors.
- Includes building infrastructure such as main electrical, mechanical and fire protection rooms.
- Includes common facilities such as loading docks and landlord's building storage areas and offices.
- BUILDING AMENITY AREAS provide a convenience for all occupants of the building.
- Could include common lounges, vending areas, fitness centers or locker and shower facilities.

THIRD FLOOR

SECOND FLOOR

LEGEND
IGA MVP OA OA OA BAA BSA FSA

BUILDING SERVICE AREAS 4,953 SF

LEGEND
IGA MVP OA OA OA BAA BSA FSA

BUILDING AMENITY AREAS 835 SF

AREA MEASUREMENT: METHOD A

METHOD A

ANSI/BOMA Z65.1-2010 OFFICE BUILDING STANDARD, METHOD A

METHOD A

THIRD FLOOR

SECOND FLOOR

ANSI/BOMA Z65.1-2010 OFFICE BUILDING STANDARD, METHOD A

	Preliminary Calculations (not for leasing)					Intermediate Calculations (not for leasing)								Final Calculations			Optional Adjustments	
Floor Level			M $=$ D Parking		$-\bar{A}-\mathrm{F}_{-1}$ Preliminary Floor Area	NTOTV- Space ID	-MEA Occupant Area		Usable Area					$-\bar{O}=$ RIO Ratio		$={ }^{-1} \mathrm{~N}^{2}$ Rentable Area	R ------ Capped Load Factor	
				--------						Ares			--------	------	------	-----		
3rd Floor Totals																		
				--------									-					
2nd Floor Totals																		
				--		-------	-------	------	------	------		-----	-----	----	--	----		
				-														
1st Floor Totals																		
Building Totals																		

[^0]
ANSI/BOMA Z65.1-2010 OFFICE BUILDING STANDARD, METHOD A

METHOD A

Intermediate Calculations (not for leasing)								Final Calculations		
$-\mathrm{G}-\mathrm{G}$	$\overline{M E A S U R E}$	$-\overline{M E A S U R E}$	$\begin{aligned} & \mathrm{J} \\ & =\mathrm{H}+\mathrm{I} \end{aligned}$	MEASURE-	$\begin{gathered} \stackrel{L}{=}-\mathrm{F}-\mathrm{J}-\mathrm{K} \end{gathered}$	$\underset{=(J+L) / J}{ }$	$-\underset{=}{\mathrm{H}^{*}} \overline{\mathrm{M}}$	$\overline{=} \overline{\mathrm{O}} \overline{\mathrm{~F}} / \bar{\sum} \overline{\mathrm{N}}$	$-=\frac{\mathrm{P}}{=} \mathrm{M}^{*} \mathrm{O}$	$-\overline{N^{*}}=\mathrm{Q} \text { or }$
Space ID	Occupant Area	Building Amenity Areas	Usable Area	Building Service Areas	Floor Service \& Amenity	R/U Ratio	Occupant + Allocated Area (0)	R/O Ratio	Load Factor A	Rentabl Area
- _ Office_300	_ _ _ _20,997		$-\quad-\quad 20,997$			$\begin{aligned} & \hline 1.0445 \\ & 1.0445 \end{aligned}$		- - - - - - - -	- - - - - - -	- - - - -
	20,997	-	20,997	-	934	1.0445	21,931			
- Office_201	$----\frac{11,070}{8,622}$		$-\mathrm{r}-\mathrm{i} \frac{11,070}{8,622}$			$\begin{aligned} & \hline 1.1137 \\ & 1.1137 \end{aligned}$	$-\quad-\quad-\frac{12}{9}, \frac{329}{6}-2$	- - - - - -	- - - - - - - -	- - - - -
	19,692	-	19,692	-	2,239	1.1137	21,931			
		$\text { - - - - - - - } 83 \overline{3}$						$--$	- - - - -	
	10,510	835	11,345	4,953	184	1.0162	10,680			
	51,199	835	52,034	4,953	3,357		54,542			

METHOD A

ANSI/BOMA Z65.1-2010 OFFICE BUILDING STANDARD, METHOD A

	Preliminary Calculations (not for leasing)					Intermediate Calculations (not for leasing)								Final Calculations			Optional Adjustments	
$\stackrel{\text { A }}{-\frac{A}{-i n P U T}}$	$\text { - } \bar{M} \bar{B}$	$\underset{\text { M }}{\mathrm{C}}$	-	$\bar{M} \bar{E} \bar{A} \bar{S} U \bar{R} \bar{E}$	$\begin{gathered} \mathrm{F}-\overline{\mathrm{B}} \\ =\mathrm{B}-\mathrm{C}-\mathrm{E}-\mathrm{C} \end{gathered}$	$\stackrel{G}{\mathrm{G}}$	MEASURE	$\overline{M E} \bar{A} \bar{S} \bar{Q} \bar{E}$	$=\frac{J}{\mathrm{I}}+\underline{1}$	$-\bar{K}$	$\begin{gathered} -\frac{L}{L} \\ -=F-J-K \end{gathered}$		$-N_{N}^{N}$		$-\frac{\mathrm{P}}{\mathrm{M}} \mathrm{M}^{*} \mathrm{O}$	$\begin{gathered} Q \\ -\overline{N^{*}} \mathrm{O} \text { or } \mathrm{H}^{*} \mathrm{P}^{-} \end{gathered}$	- $\mathrm{R}_{\text {- }}$	$\xrightarrow[S]{S}$
Floor Level	Interior Gross Area	- Majō Vertical Penetrations	Parking	Occupant Storage	Preliminary Floor Area	Space ID	Occupant Area	$\begin{gathered} \text { Building } \\ \text { Amenity } \\ \text { Areas } \\ \hline \end{gathered}$	Usable Area	Building Service Areas	Floor Service \& Amenity	RIU Ratio	Ōccupant + Allocated Area (0)	R/O Ratio	$\begin{gathered} \text { Load Factor } \\ \text { A } \end{gathered}$	Rentable Area	Capped Load Factor	$\begin{gathered} \text { Capped } \\ \text { Rentable } \\ \text { Area } \\ \hline \end{gathered}$
						Office 300	20,997		$\begin{array}{r} 20,997 \\ -\quad-9 \\ \hline \end{array}$	----- 0		$\begin{array}{l\|} \hline 1.0445 \\ 1.0445 \\ \hline \end{array}$	- - - 21,931	$\begin{array}{\|c} \hline---\frac{1.1064}{1.1064} \\ \hline \end{array}$	$\begin{array}{r} 1.1556 \\ -1.1556 \\ \hline \end{array}$	$\underline{24,264}$	$\begin{aligned} & \hline 1.1556 \\ & \hline 1.1556 \\ & \hline \end{aligned}$	-24,264
3rd Floor Totals	23,224	1,293			21,931		20,997		20,997		934	1.0445	21,931	1.1064	1.1556	24,264	1.1556	24,264
				--------		$\begin{array}{\|c} \hline \text { Office } 201 \\ \hline \text { Office } 202 \\ \hline \end{array}$	$\begin{array}{r} 11,070 \\ \hline 8,622 \\ \hline \end{array}$		$-\frac{11,070}{8,622}$			$\begin{aligned} & 1.1137 \\ & 1.1137 \end{aligned}$	$- \text { - - }-\frac{12,329}{9,602}$	$\begin{array}{\|l} \hline---1.1064 \\ 1.1064 \end{array}$	$\begin{array}{r\|} \hline 1.2322 \\ -1.2322 \\ \hline \end{array}$	$\begin{aligned} & 13,640 \\ & 10,624 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.2322 \\ & \hline 1.2322 \\ & \hline \end{aligned}$	$\begin{array}{r}13,640 \\ \hline 10,624 \\ \hline\end{array}$
2nd Floor Totals	23,224	1,293			21,931		19,692		19,692		2,239	1.1137	21,931	1.1064	1.2322	24,264	1.2322	24,264
						Office_101 -- Office- 102 - Office_103 - Fitness Ctr. Bldg. Svc.	$\begin{aligned} & -4,552 \\ & --4,086 \\ & -1,872 \end{aligned}$	-835		4,953		---1.0162 ---1.062 ---1.0162 ---1.0162			1.1243 -1.1243 -1.1243 -1.1243 -1.1243	$--\frac{5,118}{4}$, $--2,594$ $-2,105$ $---\frac{0}{0}$	---1.1243 ---1.1243 --21.1243 ---1.1243	
1st Floor Totals	17,450	968			16,482		10,510	835	11,345	4,953	184	1.0162	10,680	1.1064	1.1243	11,817	1.1243	11,817
Building Totals	63,898	3,554			60,344		51,199	835	52,034	4,953	3,357		54,542	1.1064		60,344		60,344

METHOD A

AREA MEASUREMENT: METHOD B

METHOD B

BASE BUILDING CIRCULATION

- For Method B only to allow the creation of a single load factor for the entire building.
- Hypothetical common circulation at each floor.
- Measured regardless of occupancy or actual existing conditions.
- Minimum path for access and egress from:
- Occupant areas
- Access stairs, escalators and elevators
- Restrooms, janitor's closets, drinking fountains
- Required areas of refuge
- Life safety equipment (FHC, FEC)
- Building service and amenity areas

Illustration 3A Base Building Circulation Layout

- Width determined by building standard (such as actual corridors), not code minimum.

THIRD FLOOR

SECOND FLOOR

BASE BUILDING CIRCULATION: (NONE)

NO CHANGE TO METHOD A AREAS

METHOD B

METHOD B

ANSI/BOMA Z65.1-2010 OFFICE BUILDING STANDARD, METHOD B

	Preliminary Calculations (not for leasing)					Intermediate Calculations (not for leasing)						Optional Adjustments	
A	B	C	D	E		G	H		J	K	L	M	N
INPPUT	MEAEASURE	M'EASUQ̄REE		M	=- $\bar{B}-\bar{C}-\bar{D}-\mathrm{E}^{-}$	INPUTT	MEAEASURE		=F-H-I	$\overline{=} \overline{\mathrm{F}} \overline{\bar{S}} \overline{\mathrm{~S}}$			${ }^{-}{ }^{*}{ }^{*} M^{-}$
Floor Level	Interior Gross Area	Major Vertical Penetrations	Parking	Occupant Storage	Preliminary Floor Area	Space ID	Occupant Area	Base Building Circulation	Service \& Amenity Areas	Load Factor B	Rentable Area	Capped Load Factor	Capped Rentable Area
						- - - Office 101	- - - 4,552			- - - 1.2076	- - - - 5,4977	- - - - 1.2076	
				- -		--- - Office 102	-----			---- - $1.20 \overline{2} \mathbf{6}$ -	-- - - - $4,9,934$	-- - - $1.20 \overline{0} \overline{6}$	$-x_{2}, \frac{93}{2} 4$
						-- -office 103	-----1, 1,872			-- - 1.2076	-- - 2,261	---- - $1.20 \overline{0} \overline{6}$	-- - 2,261
										$=\frac{1.2076}{1.2076}$	0	-1.2076	
1st Floor	17,450	968	-	-	16,482		10,510	-	5,972	1.2076	12,691	1.2076	12,691
						Office 201	11,090			1.2076	13,392	1.2076	13,392
						Office 202	8,641			1.2076	10,434	1.2076	-10,434
2nd Floor Totals	23,224	1,293	-	-	21,931		19,731	1,267	933	1.2076	23,826	1.2076	23,826
				-		_ _ Office 300	19,731			1.2076	23,826	1.2076	23,826
										1.2076		- 1.20276	
3rd Floor Totals	23,224	1,293	-	-	21,931		19,731	1,267	933	1.2076	23,826	1.2076	23,826
Building Totals	63,898	3,554	-	-	60,344		49,972	2,534	7,838	1.2076	60,344		60,344

METHOD B

CONCLUSIONS

CONCLUSIONS

- Method A and Method B yield the same total Rentable Area for a building.
- Method A is most common, and familiar to those used to the prior BOMA 1996 standard.
- Method B may be useful in limited cases where Landlord wishes to allocate common space more equally among all tenants, and reduce Rentable numbers on inefficient floors.
- When performing CAD take-offs, establish clearly-named separate layers for each BOMA space class for ease of reference.
- When measuring space in a building for a tenant, always ask for the Landlord's Rentable factor.
- This presentation is only a summary of basic concepts. Refer to the full BOMA Office Measurement Standard book for the most complete information.

PROS AND CONS

KEY RESOURCES

BOMA WEBSITE

OFFICIAL BOMA INTERPRETERS

STANDARDS QUESTIONS

```
:OM Intornationol

Do you have questions about the BOMA Measurement Standards? The BOMA International Official Interpreters can help.

Submit your question Submit your question
to American Building Calculations
American
Building
Calculations
2209 Collier Parkway
Land O Lakes, FL 34639
(813) 600-5472
www.abcalc biz
to Extreme Measures

\section*{Extreme measures}

55 Avenue Road Toronto, Ontario M5R 3L2 (877) 963-2787
www xmeasures com

Submit your question to Stevenson Systems


STEVENSON

27822 El Lazo Road, \#100 Laguna Niguel, CA 92677 (949) 297-4200
www.stevensonsystems com

\section*{QUESTIONS AND ANSWERS}


\section*{THANK YOU!}


\section*{Andrew Patapoff, AIA}

Senior Associate IA Interior Architects


\section*{Erik Hodgetts, AIA, LEED AP}

Director of Legal Services
IA Interior Architects

Submit a question to the moderator via the Chat box. They will be answered as time allows.

Mary Burke, AIA
Moderator


THE AMERICAN INSTITUTE OF ARCHITECTS

\section*{Thank you for joining us!}

This concludes the AIA/CES Course \#IAC001.
The webinar survey/report form URL is listed in the chat box and will be included in the follow-up email sent to you in the next few hours.

Report credit for all attendees at your site by completing the webinar survey/report form within the next 24 hours. You will be prompted to download a certificate of completion at the end of the survey.

Learn about other AIA webinar offerings at http://network.aia.org/events/webinars/.

THE AMERICAN INSTITUTE
makes a difference```


[^0]:    METHOD A

